This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute5 (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.
translated by 谷歌翻译
Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.
translated by 谷歌翻译
这项工作提出了两种统计方法,用于基于通用和用户依赖模型的击键生物识别数据的合成。两种方法在机器人检测任务上均经过验证,使用击键合成数据来更好地训练系统。我们的实验包括一个来自168,000名受试者的1.36亿击球事件的数据集。我们通过定性和定量实验分析了两种合成方法的性能。根据两个监督分类器(支持向量机和长期的短期内存网络)和一个包括人类和生成的样本在内的学习框架,考虑了不同的机器人探测器。我们的结果证明,所提出的统计方法能够生成现实的人类合成击键样品。此外,分类结果表明,在具有大型标记数据的情况下,可以高精度检测这些合成样品。但是,在几次学习方案中,它代表了一个重要的挑战。
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
Machine learning models have been found to learn shortcuts -- unintended decision rules that are unable to generalize -- undermining models' reliability. Previous works address this problem under the tenuous assumption that only a single shortcut exists in the training data. Real-world images are rife with multiple visual cues from background to texture. Key to advancing the reliability of vision systems is understanding whether existing methods can overcome multiple shortcuts or struggle in a Whac-A-Mole game, i.e., where mitigating one shortcut amplifies reliance on others. To address this shortcoming, we propose two benchmarks: 1) UrbanCars, a dataset with precisely controlled spurious cues, and 2) ImageNet-W, an evaluation set based on ImageNet for watermark, a shortcut we discovered affects nearly every modern vision model. Along with texture and background, ImageNet-W allows us to study multiple shortcuts emerging from training on natural images. We find computer vision models, including large foundation models -- regardless of training set, architecture, and supervision -- struggle when multiple shortcuts are present. Even methods explicitly designed to combat shortcuts struggle in a Whac-A-Mole dilemma. To tackle this challenge, we propose Last Layer Ensemble, a simple-yet-effective method to mitigate multiple shortcuts without Whac-A-Mole behavior. Our results surface multi-shortcut mitigation as an overlooked challenge critical to advancing the reliability of vision systems. The datasets and code are released: https://github.com/facebookresearch/Whac-A-Mole.git.
translated by 谷歌翻译
This paper develops a clustering method that takes advantage of the sturdiness of model-based clustering, while attempting to mitigate some of its pitfalls. First, we note that standard model-based clustering likely leads to the same number of clusters per margin, which seems a rather artificial assumption for a variety of datasets. We tackle this issue by specifying a finite mixture model per margin that allows each margin to have a different number of clusters, and then cluster the multivariate data using a strategy game-inspired algorithm to which we call Reign-and-Conquer. Second, since the proposed clustering approach only specifies a model for the margins -- but leaves the joint unspecified -- it has the advantage of being partially parallelizable; hence, the proposed approach is computationally appealing as well as more tractable for moderate to high dimensions than a `full' (joint) model-based clustering approach. A battery of numerical experiments on artificial data indicate an overall good performance of the proposed methods in a variety of scenarios, and real datasets are used to showcase their application in practice.
translated by 谷歌翻译
Developing robust and fair AI systems require datasets with comprehensive set of labels that can help ensure the validity and legitimacy of relevant measurements. Recent efforts, therefore, focus on collecting person-related datasets that have carefully selected labels, including sensitive characteristics, and consent forms in place to use those attributes for model testing and development. Responsible data collection involves several stages, including but not limited to determining use-case scenarios, selecting categories (annotations) such that the data are fit for the purpose of measuring algorithmic bias for subgroups and most importantly ensure that the selected categories/subcategories are robust to regional diversities and inclusive of as many subgroups as possible. Meta, in a continuation of our efforts to measure AI algorithmic bias and robustness (https://ai.facebook.com/blog/shedding-light-on-fairness-in-ai-with-a-new-data-set), is working on collecting a large consent-driven dataset with a comprehensive list of categories. This paper describes our proposed design of such categories and subcategories for Casual Conversations v2.
translated by 谷歌翻译
The library scikit-fda is a Python package for Functional Data Analysis (FDA). It provides a comprehensive set of tools for representation, preprocessing, and exploratory analysis of functional data. The library is built upon and integrated in Python's scientific ecosystem. In particular, it conforms to the scikit-learn application programming interface so as to take advantage of the functionality for machine learning provided by this package: pipelines, model selection, and hyperparameter tuning, among others. The scikit-fda package has been released as free and open-source software under a 3-Clause BSD license and is open to contributions from the FDA community. The library's extensive documentation includes step-by-step tutorials and detailed examples of use.
translated by 谷歌翻译
Density based representations of atomic environments that are invariant under Euclidean symmetries have become a widely used tool in the machine learning of interatomic potentials, broader data-driven atomistic modelling and the visualisation and analysis of materials datasets.The standard mechanism used to incorporate chemical element information is to create separate densities for each element and form tensor products between them. This leads to a steep scaling in the size of the representation as the number of elements increases. Graph neural networks, which do not explicitly use density representations, escape this scaling by mapping the chemical element information into a fixed dimensional space in a learnable way. We recast this approach as tensor factorisation by exploiting the tensor structure of standard neighbour density based descriptors. In doing so, we form compact tensor-reduced representations whose size does not depend on the number of chemical elements, but remain systematically convergeable and are therefore applicable to a wide range of data analysis and regression tasks.
translated by 谷歌翻译
通常声称由软材料制成的腿部机器人比其刚性材料表现出更安全,更健壮的环境相互作用。但是,软机器人的这种激励特征需要更严格的开发才能与刚性运动进行比较。本文介绍了一个柔软的机器人平台Horton和一个反馈控制系统,并在其操作的某些方面保证了安全性。该机器人是使用一系列软肢构造的,由热形记忆合金(SMA)线肌肉作用,其位置和执行器温度的传感器。监督控制方案在机器人姿势的单独控制器操作过程中维护安全执行者状态。实验表明,霍顿可以举起腿并保持平衡姿势,这是运动的前身。在平衡过程中,通过人类交互测试在硬件中验证了主管,使所有SMA肌肉保持在温度阈值以下。这项工作代表了任何柔软的腿机器人的安全验证反馈系统的首次演示。
translated by 谷歌翻译